Paper Id:
Roll No: \square

B. TECH.

(SEM III) THEORY EXAMINATION 2019-20 DISCRETE STRUCTURES \& THEORY OF LOGIC
Time: 3 Hours
Total Marks: 100
Notel.AttemaltSectiohfs equiaceymissidgtatheahooselitably.
SECTIOAN

1. Attemp
$2 \times 10=20$

Qno.	Question	Marks	CO
a.	Define various types of functions.	2	CO1
b.	How many symmetric and reflexive relations are possible from a set A containing ' n ' elements?	2	CO1
c.	Let Z be the group of integers with binary operation * defined by $a * b=a+b-2$, for all $a, b \in Z$. Find the identity element of the group $\left\langle Z,{ }^{*}\right\rangle$	2	CO2
d.	Show that every cyclic group is abelian.	2	CO2
e.	Prove that a lattice with 5 elements is not a boolean algebra.	2	CO3
f.	Write the contra positive of the implication: "if it is Sunday then it is a holiday".	2	CO4
g.	Show that the propositions $p \rightarrow q$ and $\neg p \vee q$ are logically equivalent.	2	CO4
h.	Show that there does not exist a graph with 5 yertices with degrees 1,3 , 4, 2, 3 respectively.	2	CO5
1.	Obtain the generating function for the sequence $4,4,4,4,4,4,4$	2	CO5
J.	Define Pigeon hole principl	2	CO5

SECTION B
2. Attempt any three oitne following:
$3 \times 10=30$

Qno.	Question	Marks	CO
a.	Prove that $\sqrt{\sqrt{1}}+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+\ldots \ldots .+\frac{1}{\sqrt{n}}>\sqrt{n}$ for $n \geq 2$ using principle of mathematical induction	10	CO1
b.	What do you mean by cosets of a subgroup? Consider the group Z integers under addition and the subgroup $\mathrm{H}=\{\ldots,-12,-6,0,612, \ldots \ldots\}$ considering of multiple of 6 (i) Find the cosets of H in Z (ii) What is the index of H in Z .	olf0	CO2
c.	Show that the following are equivalent in a Boolean algebra $a \leq b \Leftrightarrow a^{*} b^{\prime}=0 \Leftrightarrow b^{\prime} \leq a \Leftrightarrow \not \oplus^{\prime}=b \quad 1$	10	CO3
d.	Show that $((P \vee Q) \wedge \leftarrow \leftarrow Q \leftarrow R)) \vee(\leftarrow P \vee Q) \vee(\leftarrow P \vee \leftarrow R)$ is \quad a tautology by using equivalences.	10	CO4
e.	Define planar graph. Prove that for any connected planar graph, $\mathrm{v}-\mathrm{e}+\mathrm{r}=2$ Where $\mathrm{v}, \mathrm{e}, \mathrm{r}$ is the number of vertices, edges, and regions of the graph respectively.	10	CO5

Paper Id:
110323
Roll No: \square

SECTION C

3. Attempt any one part of the following:
$1 \times 10=10$

Qno.	Question	Marks	CO
a.	Find the numbers between 1 to 500 that are not divisible by any of the integers 2 or 3 or 5 or 7.	10	CO1
b.	Is the "divides" relation on the set of positive integers transitive? What is the reflexive and symmetric closure of the relation? $R=\{(a, b) \mid a>b\}$ on the set of positive integers?	10	CO1

4. Attempt any one part of the following:
$1 \times 10=10$

Qno.	Question	Marks	CO
a.	What is Ring? Define elementary properties of Ring with example.	10	CO2
b.	Prove or disprove that intersection of two normal subgroups of a group G is again a normal subgroup of G.	10	CO2

Qno.	Question	Marks	CO
a.	Let $(L, \vee, \wedge \leadsto$ be a distributive lattice and $a, b \in L$. if $a \wedge b=a \wedge c$ and $a \vee b=a \vee c$ then show that $b=c$	10	CO3
b.	Obtain the principle disjunctive and conjunctive normal forms of the formula $(\square p \rightarrow \lambda) \quad(q \leftrightarrow p)$	10	CO3

6. Attempt any one part of the following:
$1 \times 10=10$

Qno.	- Question	Marks	CO
a.	Explain various Rules of ${ }^{\text {mprerence for Propositional Logic. }}$	10	CO4
b.	Prove the validity of the following argument "if the races are fixed so the casinos are crooked fien the tourist trade will decline. If the tourist trade decreases, then trapolice will be happy. The police force is never happy. Therefore, thegices are not fixed.	10	CO4

7. Attempt any one part of the following:
$1 \times 10=10$

Qno.	Question	Marks	CO
a.	Solve the following recurrence equation using generating function $\mathrm{G}(\mathrm{K})-7 \mathrm{G}(\mathrm{K}-1)+10 \mathrm{G}(\mathrm{K}-2)=8 \mathrm{~K}+6$	10	CO5
b.	A collection of 10 electric bulbs contain 3 defective ones (i) In how many ways can a sample of four bulbs be selected? (ii) In how many ways can a sample of 4 bulbs be selected which contain 2 good bulbs and 2 defective ones? (iii) In how many ways can a sample of 4 bulbs be selected so that either the sample contains 3 good ones and 1 defectives ones or 1 good and 3 defectives ones?	10	CO5

